В школьной столовой на первое можно заказать борщ солянку

1. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе — мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье — чай и компот. Сколько различных обедов можно составить из указанных блюд?

1 способ. Перечислим возможные варианты

18 вариантов. 2 способ. Дерево возможностей.

3 способ. Используя правило умножения, получаем: 3х3х2=1

2. Свете на день рождения подарили 4 плюшевых игрушки, 2 мяча и 5 кукол. Мама положила все игрушки в большую коробку. Сколькими способами Света сможет достать из коробки 1 плюшевую игрушку, 1 мяч и 1 куклу?

1 способ. Обозначим мячи — М1, М2, игрушки- И1,И2,И3, И4, куклы- К1,К2, К3, К4, К5. Перечислим возможные варианты:

М1-И1-К1, М1-И1-К2, М1-И1-К3, М1-И1-К4, М1-И1-К5, М1-И2-К1, М1-И2-К2, М1-И2-К3, М1-И2-К4, М1-И2-К5, М1-И3-К1, М1-И3-К2, М1-И3-К3, М1-И3-К4, М1-И3-К5, М1-И4-К1, М1-И4-К2, М1-И4-К3, М1-И4-К4, М1-И4-К5 М2-И1-К1, М2-И1-К2, М2-И1-К3, М2-И1-К4, М2-И1-К5, М2-И2-К1, М2-И2-К2, М2-И2-К3, М2-И2-К4, М2-И2-К5, М2-И3-К1, М2-И3-К2, М2-И3-К3, М2-И3-К4, М2-И3-К5, М2-И4-К1, М2-И4-К2, М2-И4-К3, М2-И4-К4, М2-И4-К5

Ответ: 40 вариантов. 2 способ. Используя правило умножения, получаем: 2х4х5= 40

3. Сколько четных двузначных чисел можно составить из цифр 0, 2, 3, 6, 7, 9?

1 способ. Перечислим возможные варианты.

2 способ. Дерево возможностей.

3 способ. Используя правило умножения, получаем: 5х3=15 .

4. Мисс Марпл, расследуя убийство, заметила отъезжающее от дома мистера Дэвидсона такси. Она запомнила первую цифру “2”. В городке номера машин были трехзначные и состояли из цифр 1,2,3,4 и 5. Скольких водителей, в худшем случае, ей придется опросить, чтобы найти настоящего убийцу?

1 способ. Перечислим возможные варианты номеров такси:

2 способ. Используя правило умножения, получаем: 5х5=25

5. Саша, Петя, Денис, Оля, Настя часто ходят в кафе. Каждый раз, обедая там, они рассаживаются по-разному. Сколько дней друзья смогут это сделать без повторения?

1 способ. Пронумеруем стулья, на которых должен сесть каждый, и будем считать, что они рассаживаются поочередно:

№1 — Саша — есть возможность выбрать из 5 вариантов (стульев) №2 — Петя — 4 варианта №3- Денис — 3 варианта №4- Оля — 2 варианта №5 — Настя- 1 вариант

Используя правило умножения, получаем: 5х4х3х2х1=120

2 способ. Решаем, используя понятие факториала: 5!=120

6. Из учащихся пяти 11 классов нужно выбрать двоих дежурных. Сколько пар дежурных можно составить (ученики в паре не должны быть из одного класса)?

1 способ. Перечислим возможные варианты состава пары:

11А-11Б, 11А-11В, 11А-11Г, 11А-11Д, 11Б-11В, 11Б-11Г, 11Б-11Д, 11В-11Г, 11В-11Д, 11Г-11Д

2 способ. Из пяти классов нужно выбрать 2 дежурных. Число элементарных событий = = 10

7. В 8 “а” классе лучше всех математику знают 5 учеников: Вася, Дима, Олег, Катя и Аня. На олимпиаду по математике нужно отправить пару, состоящую из 1 мальчика и 1 девочки. Сколькими способами учительница может эту пару выбрать?

1 способ. Обозначим имена детей первыми заглавными буквами. Получаем следующие пары: В-К, В-А, Д-К, Д-А, О-К, О-А.

2 способ. Мальчиков 3, из них 1 можно выбрать , девочек 2, из них можно 1 выбрать, используя правило умножения, получаем:х= 6

8. В соревнованиях по фигурному катанию принимали участие россияне, итальянцы, украинцы, немцы, китайцы и французы.

Сколькими способами могут распределится места по окончании соревнований? Обозначим участников по первой заглавной букве страны и пронумеруем: Р1, И2, У3, Н4,К5, Ф6 Р1 — имеют возможность занять с1-6 места, т.е. 6 вариантов И2 — 5 вариантов У3- 4 варианта Н4- 3 варианта К5- 2 варианта Ф6- 1 вариант Используя правило умножения, получаем: 6х5х4х3х2х1= 720

2 способ. Используя понятие факториала, получаем: 6!=720

9. В 9 “б” классе 6 человек (Галя, Света, Катя, Оля, Максим, Витя) учатся на все пятерки. Департамент образования премировал лучших учащихся путевками в Анапу. Но, к сожалению, путевок всего четыре. Сколько возможно вариантов выбора учеников на отдых?

Обозначим первыми заглавными буквами имен учащихся. Возможны следующие тройки: Г-С-К-О, Г-С-К-М, Г-С-К-В, Г-С-О-М, Г-С-О-В, Г-С-М-В С-К-О-М, С-К-О-В, С-К-М-В, К-О-М-В, С-О-М-В, Г-К-О-В, Г-К-О-В, Г-О-М-В, Г-К-М-В

2 способ. Из 6 человек нужно выбрать 4, число элементарных событий равно = 15

10. Пете на день рождения подарили 7 новых дисков с играми, а Вале папа привез 9 дисков из командировки. Сколькими способами они могут обменять 4 любых диска одного на 4 диска другого?

Вычислим, сколько четверок из 7 дисков можно составить у Пети: =35, число четверок у Вали из 9 дисков —= 126 По правилу умножения находим число обменов35х126=4410

11. Войсковое подразделение состоит из 5 офицеров, 8 сержантов и 70 рядовых. Сколькими способами можно выделить отряд из 2 офицеров, 4 сержантов и 15 рядовых?

Из 5 офицеров выбрать 2 можно с помощью числа сочетаний =10 способами, из 8 сержантов 4 —=70, из 70 рядовых 15 —. По правилу умножения находим число выбора отряда: 10х70х=700х

12. В ювелирную мастерскую привезли 6 изумрудов, 9 алмазов и 7 сапфиров. Ювелиру заказали браслет, в котором 3 изумруда, 5 алмазов и 2 сапфиров. Сколькими способами он может выбрать камни на браслет?

Из 6 изумрудов 3 он может выбрать =20 способами, из 9 алмазов 5 —=126, из 7 сапфиров 2 —=21. По правилу умножения находим число вариантов 20х126х21=52920

13. На выборах победили 9 человек — Сафонов, Николаев, Петров, Кулаков, Мишин, Гусев, Володин, Афонин, Титов. Из них нужно выбрать председателя, заместителя и профорга. Сколькими способами это можно сделать?

Здесь речь идет о размещениях Можно было решать по-другому. На должность председателя выбираем из 9 человек, на заместителя — из 8, на профорга — из 7 По правилу умножения получаем9х8х7=504

14. В районе построили новую школу. Из пришедших 25 человек нужно выбрать директора школы, завуча начальной школы, завуча среднего звена и завуча по воспитательной работе. Сколькими способами это можно сделать?

На должность директора выбираем из 25 человек, на завуча начальной — из 24, завуча среднего звена — из 23, завуча по воспитательной работе — 22. По правилу умножения получаем: 25х24х23х22 = 303600 Или, зная формулу размещения, получаем

15. В студенческом общежитии в одной комнате живут трое студентов Петя, Вася и Коля. У них есть 6 чашек, 8 блюдец и 10 чайных ложек (все принадлежности отличаются друг от друга). Сколькими способами ребята могут накрыть стол для чаепития (так, что каждый получит чашку, блюдце и ложку)?

Для Пети набор можно набрать 6х8х10=480 способами, для Васи — 5х7х9=315, для Коли — 4х6х8=192. По правилу умножения получаем 480х315х192=29030400 способами.

16. В кабинете заведующего ювелирного магазина имеется код, состоящий из двух различных гласных букв русского алфавита, за которой следуют 3 различные цифры. Сколько вариантов придется перебрать мошеннику, чтобы раздобыть драгоценности, которые там хранятся?

В русском языке 9 гласных букв — а, е, е, и, о, у, э, ю, я. Выбрать из них 2 можно =36 способами. Из 10 цифр выбрать 3 можно=120 способами. Применяя правило умножения, получаем: 36х120=4320

17. Сколькими способами можно составить трехцветный флаг из полос разной ширины, если имеются материи из 8 тканей? Эта задача на размещение

Другой способ решения. 1цвет выбирается из 8 тканей 8 способами 2цвет выбирается 7 способами 3 цвет — 6способами Используя правило умножения, получаем 8х7х6=336 способов.

18. В 9 классе 15 предметов. Завучу школы нужно составить расписание на субботу, если в этот день 5 уроков. Сколько различных вариантов расписания можно составить, если все уроки различные?

Из 15 предметов 5 любых можно выбрать

19. В огороде у бабушки растут 3 белые, 2 алые и 4 чайных розы. Сколькими различными способами можно составить букет из трех роз разного цвета?

1 способ. Обозначим белые — Б1, Б2, Б3, алые — А1,А2, чайные — Ч1, Ч2, Ч3,Ч4 Перечислим возможные варианты Б1-А1-Ч1, Б1-А1-Ч2, Б1-А1-Ч3, Б1-А1-Ч4, Б1-А2-Ч1,Б1-А2-Ч2, Б1-А2-Ч3, Б1-А2-Ч4 Б2- А1-Ч1, Б2-А1-Ч2, Б2-А1-Ч3, Б2-А1-Ч4, Б2-А2-Ч1,Б2-А2-Ч2, Б2-А2-Ч3, Б2-А2-Ч4 Б3- А1-Ч1, Б3-А1-Ч2, Б3-А1-Ч3, Б3-А1-Ч4, Б3-А2-Ч1,Б3-А2-Ч2, Б3-А2-Ч3, Б3-А2-Ч4

2способ. Дерево возможностей

3 способ. Используя правило умножения, получаем: 2х3х4=24

20. К 60-летию Победы группа школьников отправилась по местам боевых действий в Смоленской области. Они планировали осуществить поход по маршруту деревни Сосновка-Быковка- Масловка- Видово. Из С в Б можно проплыть по реке или пройти пешком, из Б в М- пешком или на автобусе, из М в В — по реке, пешком или автобусе. Сколько вариантов похода есть у щкольников?

Читайте также:  Какое мясо лучше для борща свинина или говядина

1 способ. Обозначим СБ — путь из Сосновки в Бытовку, ВГ — путь из Быковки в Масловку, МВ — путь из Масловки в Видово. По реке -Р, пешком — П, на автобусе — А Перечислим возможные варианты: СБР- БМП-МВР, СБР- БМП-МВП, СБР- БМП-МВА СБР-БМА-МВР, СБР-БМА-МВП, СБР-БМА-МВА СБА- БМП-МВР, СБА- БМП-МВП, СБА- БМП-МВА СБА-БМА-МВР, СБА-БМА-МВП, СБА-БМА-МВА Ответ: 12 вариантов.

2 способ. Дерево возможностей

Задачи по комбинаторике. Примеры решений

На данном уроке мы коснёмся элементов комбинаторики, которые потребуются для дальнейшего изучения теории вероятностей. Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут 😉

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность)и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений»? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различныхобъектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

Вопрос первый: сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша груша / яблоко / банан груша / банан / яблоко банан / яблоко / груша банан / груша / яблоко

Итого: 6 комбинаций или 6 перестановок.

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Пожалуйста, откройте справочный материал Основные формулы комбинаторики(методичку удобно распечатать) и в пункте №2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить способами.

Вопрос второй: сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний:

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша; яблоко и банан; груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки: способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта: способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей, уже кое о чём догадались. Но о смысле знака «плюс» позже.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий: сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша; яблоко и банан; груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов: яблоком можно угостить Дашу, а грушей – Наташу; либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

В данном случае работает формула количества размещений:

Она отличается от формулы тем, что учитываетне только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждойвозможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей.

Пожалуйста, внимательно прочитайте пункт №2 методички Основные формулы комбинаторики и постарайтесь хорошо уяснить разницу между перестановками, сочетаниями и размещениями. В простейших случаях можно пересчитать все возможные комбинации вручную, но чаще всего это становится неподъемной задачей, именно поэтому и нужно понимать смысл формул.

Также напоминаю, что сейчас речь идёт о множестве с различными объектами, и если яблоко/грушу/банан заменить на 3 яблока или даже на 3 очень похожих яблока, то в контексте рассмотренной задачи они всё равно будут считаться различными.

Остановимся на каждом виде комбинаций подробнее:

Перестановками называют комбинации, состоящие из одних и тех же различныхобъектов и отличающиеся только порядком их расположения. Количество всех возможных перестановок выражается формулой

Отличительной особенностью перестановок является то, что в каждой из них участвуетВСЁ множество, то есть, все объектов. Например, дружная семья:

Сколькими способами можно рассадить 5 человек за столом?

Решение: используем формулу количества перестановок:

Невероятно, но факт. Обратите внимание, что здесь не имеет значения круглый ли стол, квадратный, или вообще все люди сели встали, легли на скамейку вдоль одной стены – важно лишь количество объектов и их взаимное расположение. Помимо перестановок людей, часто встречается задача о перестановках различных книг на полке, но это было бы слишком просто даже для чайника:

Сколько четырёхзначных чисел можно составить из четырёх карточек с цифрами 0, 5, 7, 9?

Для того чтобы составить четырёхзначное число нужно задействовать все четыре карточки(цифры на которых различны!), и это очень важная предпосылка для применения формулы Очевидно, что, переставляя карточки, мы будем получать различные четырёхзначные числа, … стоп, а всё ли тут в порядке? 😉

Хорошенько подумайте над задачей! Вообще, это характерная черта комбинаторных и вероятностных задач – в них НУЖНО ДУМАТЬ. И зачастую думать по-житейски, как, например, в разборе вступительного примера с фруктами. Нет, конечно, я не призываю тупо прорабатывать другие разделы математики, однако должен заметить, что те жеинтегралы можно научиться решать чисто механически.

Решение и ответ в конце урока.

В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому, в моих устах формулировка будет не особо рациональной, но, надеюсь, доходчивой:

Сочетаниями называют различные комбинации из объектов, которые выбраны из множестваразличных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание – это уникальная выборка изэлементов, в которойне важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле .

В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение: прежде всего, снова обращаю внимание на то, что по логике условия, детали считаются различными – даже если они на самом деле однотипны и визуально одинаковы (в этом случае их можно, например, пронумеровать).

Читайте также:  Требования к качеству борща с черносливом и грибами

В задаче речь идёт о выборке из 4-х деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

Здесь, конечно же, не нужно ворочать огромные числа . В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольшийфакториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует представить в виде. Распишу очень подробно:

способами можно взять 4 детали из ящика.

Ещё раз: что это значит? Это значит, что из набора 15-ти различных деталей можно составить одну тысячу триста шестьдесят пять уникальных сочетания 4-х деталей. То есть, каждая такая комбинация из 4-х деталей будет отличаться от других комбинаций хотя бы одной деталью.

Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения:. Применительно к разобранной задаче:

– единственным способом можно взять ни одной детали; способами можно взять 1 деталь (любую из 15-ти);способами можно взять 14 деталей (при этом какая-то одна из 15-ти останется в ящике);– единственным способом можно взять все пятнадцать деталей.

Рекомендую внимательно ознакомиться с биномом Ньютона и треугольником Паскаля, по которому, к слову, очень удобно выполнять проверку вычислений при небольших значениях «эн».

Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Это пример для самостоятельного решения. Чем приятны многие комбинаторные задачи, так это краткостью – главное, разобраться в сути.

Или «продвинутые» сочетания. Размещениями называют различные комбинации из объектов, которые выбраны из множестваразличных объектов, и которые отличаются друг от друга как составом объектов в выборке,так и их порядком. Количество размещений рассчитывается по формуле

Боря, Дима и Володя сели играть в «очко». Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Решение: ситуация похожа на предыдущую задачу, но отличается тем, что здесь важно не только то, какие три карты будут извлечены из колоды, но и то, КАК они будут распределены между игроками. По формуле размещений:

способами можно раздать 3 карты игрокам.

Есть и другая схема решения, которая, с моей точки зрения, даже понятнее:

По материалам studfiles.net

1. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе — мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье — чай и компот. Сколько различных обедов можно составить из указанных блюд?

1 способ. Перечислим возможные варианты

18 вариантов.
2 способ. Дерево возможностей.

3 способ. Используя правило умножения, получаем: 3х3х2=1

2. Свете на день рождения подарили 4 плюшевых игрушки, 2 мяча и 5 кукол. Мама положила все игрушки в большую коробку. Сколькими способами Света сможет достать из коробки 1 плюшевую игрушку, 1 мяч и 1 куклу?

1 способ. Обозначим мячи — М1, М2, игрушки- И1,И2,И3, И4, куклы- К1,К2, К3, К4, К5.
Перечислим возможные варианты:

М1-И1-К1, М1-И1-К2, М1-И1-К3, М1-И1-К4, М1-И1-К5,
М1-И2-К1, М1-И2-К2, М1-И2-К3, М1-И2-К4, М1-И2-К5,
М1-И3-К1, М1-И3-К2, М1-И3-К3, М1-И3-К4, М1-И3-К5,
М1-И4-К1, М1-И4-К2, М1-И4-К3, М1-И4-К4, М1-И4-К5
М2-И1-К1, М2-И1-К2, М2-И1-К3, М2-И1-К4, М2-И1-К5,
М2-И2-К1, М2-И2-К2, М2-И2-К3, М2-И2-К4, М2-И2-К5,
М2-И3-К1, М2-И3-К2, М2-И3-К3, М2-И3-К4, М2-И3-К5,
М2-И4-К1, М2-И4-К2, М2-И4-К3, М2-И4-К4, М2-И4-К5

Ответ: 40 вариантов.
2 способ. Используя правило умножения, получаем: 2х4х5= 40

3. Сколько четных двузначных чисел можно составить из цифр 0, 2, 3, 6, 7, 9?

1 способ.
Перечислим возможные варианты.

2 способ. Дерево возможностей.

3 способ. Используя правило умножения, получаем: 5х3=15 .

4. Мисс Марпл, расследуя убийство, заметила отъезжающее от дома мистера Дэвидсона такси. Она запомнила первую цифру “2”. В городке номера машин были трехзначные и состояли из цифр 1,2,3,4 и 5. Скольких водителей, в худшем случае, ей придется опросить, чтобы найти настоящего убийцу?

1 способ. Перечислим возможные варианты номеров такси:

Ответ: 25 человек.

2 способ. Используя правило умножения, получаем: 5х5=25

5. Саша, Петя, Денис, Оля, Настя часто ходят в кафе. Каждый раз, обедая там, они рассаживаются по-разному. Сколько дней друзья смогут это сделать без повторения?

1 способ. Пронумеруем стулья, на которых должен сесть каждый, и будем считать, что они рассаживаются поочередно:

№1 — Саша — есть возможность выбрать из 5 вариантов (стульев)
№2 — Петя — 4 варианта
№3- Денис — 3 варианта
№4- Оля — 2 варианта
№5 — Настя- 1 вариант

Используя правило умножения, получаем: 5х4х3х2х1=120

2 способ. Решаем, используя понятие факториала: 5!=120

6. Из учащихся пяти 11 классов нужно выбрать двоих дежурных. Сколько пар дежурных можно составить (ученики в паре не должны быть из одного класса)?

1 способ. Перечислим возможные варианты состава пары:

11А-11Б, 11А-11В, 11А-11Г, 11А-11Д,
11Б-11В, 11Б-11Г, 11Б-11Д, 11В-11Г, 11В-11Д, 11Г-11Д

Ответ: 10 пар.

2 способ. Из пяти классов нужно выбрать 2 дежурных.
Число элементарных событий = = 10

7. В 8 “а” классе лучше всех математику знают 5 учеников: Вася, Дима, Олег, Катя и Аня. На олимпиаду по математике нужно отправить пару, состоящую из 1 мальчика и 1 девочки. Сколькими способами учительница может эту пару выбрать?

1 способ. Обозначим имена детей первыми заглавными буквами.
Получаем следующие пары:
В-К, В-А, Д-К, Д-А, О-К, О-А.

Ответ: 6 пар.

2 способ. Мальчиков 3, из них 1 можно выбрать , девочек 2, из них можно 1 выбрать , используя правило умножения, получаем:
х = 6

8. В соревнованиях по фигурному катанию принимали участие россияне, итальянцы, украинцы, немцы, китайцы и французы.

Сколькими способами могут распределится места по окончании соревнований?
Обозначим участников по первой заглавной букве страны и пронумеруем: Р1, И2, У3, Н4,К5, Ф6
Р1 — имеют возможность занять с1-6 места, т.е. 6 вариантов
И2 — 5 вариантов
У3- 4 варианта
Н4- 3 варианта
К5- 2 варианта
Ф6- 1 вариант
Используя правило умножения, получаем: 6х5х4х3х2х1= 720

2 способ. Используя понятие факториала, получаем: 6!=720

9. В 9 “б” классе 6 человек (Галя, Света, Катя, Оля, Максим, Витя) учатся на все пятерки. Департамент образования премировал лучших учащихся путевками в Анапу. Но, к сожалению, путевок всего четыре. Сколько возможно вариантов выбора учеников на отдых?

Обозначим первыми заглавными буквами имен учащихся.
Возможны следующие тройки:
Г-С-К-О, Г-С-К-М, Г-С-К-В,
Г-С-О-М, Г-С-О-В, Г-С-М-В
С-К-О-М, С-К-О-В, С-К-М-В,
К-О-М-В, С-О-М-В, Г-К-О-В,
Г-К-О-В, Г-О-М-В, Г-К-М-В

2 способ. Из 6 человек нужно выбрать 4, число элементарных событий равно = 15

10. Пете на день рождения подарили 7 новых дисков с играми, а Вале папа привез 9 дисков из командировки. Сколькими способами они могут обменять 4 любых диска одного на 4 диска другого?

Вычислим, сколько четверок из 7 дисков можно составить у Пети:
=35, число четверок у Вали из 9 дисков — = 126
По правилу умножения находим число обменов 35х126=4410

11. Войсковое подразделение состоит из 5 офицеров, 8 сержантов и 70 рядовых. Сколькими способами можно выделить отряд из 2 офицеров, 4 сержантов и 15 рядовых?

Из 5 офицеров выбрать 2 можно с помощью числа сочетаний =10 способами, из 8 сержантов 4 — =70, из 70 рядовых 15 — . По правилу умножения находим число выбора отряда:
10х70х = 700х

12. В ювелирную мастерскую привезли 6 изумрудов, 9 алмазов и 7 сапфиров. Ювелиру заказали браслет, в котором 3 изумруда, 5 алмазов и 2 сапфиров. Сколькими способами он может выбрать камни на браслет?

Из 6 изумрудов 3 он может выбрать =20 способами, из 9 алмазов 5 — =126, из 7 сапфиров 2 — =21. По правилу умножения находим число вариантов 20х126х21=52920

13. На выборах победили 9 человек — Сафонов, Николаев, Петров, Кулаков, Мишин, Гусев, Володин, Афонин, Титов. Из них нужно выбрать председателя, заместителя и профорга. Сколькими способами это можно сделать?

Здесь речь идет о размещениях
Можно было решать по-другому. На должность председателя выбираем из 9 человек, на заместителя — из 8, на профорга — из 7
По правилу умножения получаем 9х8х7=504

14. В районе построили новую школу. Из пришедших 25 человек нужно выбрать директора школы, завуча начальной школы, завуча среднего звена и завуча по воспитательной работе. Сколькими способами это можно сделать?

Читайте также:  Сколько калорий в борще с капустой без мяса

На должность директора выбираем из 25 человек, на завуча начальной — из 24, завуча среднего звена — из 23, завуча по воспитательной работе — 22. По правилу умножения получаем:
25х24х23х22 = 303600
Или, зная формулу размещения, получаем

15. В студенческом общежитии в одной комнате живут трое студентов Петя, Вася и Коля. У них есть 6 чашек, 8 блюдец и 10 чайных ложек (все принадлежности отличаются друг от друга). Сколькими способами ребята могут накрыть стол для чаепития (так, что каждый получит чашку, блюдце и ложку)?

Для Пети набор можно набрать 6х8х10=480 способами, для Васи — 5х7х9=315, для Коли — 4х6х8=192. По правилу умножения получаем
480х315х192=29030400 способами.

16. В кабинете заведующего ювелирного магазина имеется код, состоящий из двух различных гласных букв русского алфавита, за которой следуют 3 различные цифры. Сколько вариантов придется перебрать мошеннику, чтобы раздобыть драгоценности, которые там хранятся?

В русском языке 9 гласных букв — а, е, е, и, о, у, э, ю, я. Выбрать из них 2 можно =36 способами. Из 10 цифр выбрать 3 можно =120 способами. Применяя правило умножения, получаем:
36х120=4320

17. Сколькими способами можно составить трехцветный флаг из полос разной ширины, если имеются материи из 8 тканей?
Эта задача на размещение

Другой способ решения.
1цвет выбирается из 8 тканей 8 способами
2цвет выбирается 7 способами
3 цвет — 6способами
Используя правило умножения, получаем 8х7х6=336 способов.

18. В 9 классе 15 предметов. Завучу школы нужно составить расписание на субботу, если в этот день 5 уроков. Сколько различных вариантов расписания можно составить, если все уроки различные?

Из 15 предметов 5 любых можно выбрать

19. В огороде у бабушки растут 3 белые, 2 алые и 4 чайных розы. Сколькими различными способами можно составить букет из трех роз разного цвета?

1 способ. Обозначим белые — Б1, Б2, Б3, алые — А1,А2, чайные — Ч1, Ч2, Ч3,Ч4
Перечислим возможные варианты
Б1-А1-Ч1, Б1-А1-Ч2, Б1-А1-Ч3, Б1-А1-Ч4, Б1-А2-Ч1,Б1-А2-Ч2, Б1-А2-Ч3, Б1-А2-Ч4
Б2- А1-Ч1, Б2-А1-Ч2, Б2-А1-Ч3, Б2-А1-Ч4, Б2-А2-Ч1,Б2-А2-Ч2, Б2-А2-Ч3, Б2-А2-Ч4
Б3- А1-Ч1, Б3-А1-Ч2, Б3-А1-Ч3, Б3-А1-Ч4, Б3-А2-Ч1,Б3-А2-Ч2, Б3-А2-Ч3, Б3-А2-Ч4

Ответ: 24 варианта.

2способ. Дерево возможностей

3 способ. Используя правило умножения, получаем: 2х3х4=24

20. К 60-летию Победы группа школьников отправилась по местам боевых действий в Смоленской области. Они планировали осуществить поход по маршруту деревни Сосновка-Быковка-Масловка- Видово. Из С в Б можно проплыть по реке или пройти пешком, из Б в М- пешком или на автобусе, из М вВ — по реке, пешком или автобусе. Сколько вариантов похода есть у щкольников?

1 способ. Обозначим СБ — путь из Сосновки в Бытовку, ВГ — путь из Быковки в Масловку, МВ — путь из Масловки в Видово.
По реке -Р, пешком — П, на автобусе — А
Перечислим возможные варианты:
СБР- БМП-МВР, СБР- БМП-МВП, СБР- БМП-МВА
СБР-БМА-МВР, СБР-БМА-МВП, СБР-БМА-МВА
СБА- БМП-МВР, СБА- БМП-МВП, СБА- БМП-МВА
СБА-БМА-МВР, СБА-БМА-МВП, СБА-БМА-МВА
Ответ: 12 вариантов.

2 способ. Дерево возможностей

Задачи по комбинаторике. Примеры решений

На данном уроке мы коснёмся элементов комбинаторики, которые потребуются для дальнейшего изучения теории вероятностей. Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут 😉

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность)и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

По материалам poisk-ru.ru

Столичный учебный центр
г. Москва

1. На завтрак в школьной столовой любой ученик может выбрать булочку, ватрушку, кекс или сочник, а запить их он может соком, чаем или компотом. Сколько вариантов завтрака предлагается в школьной столовой? Постройте дерево возможных вариантов выбора .

3. Сколько четных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 7? (цифры могут повторяться)

1. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе — мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье — чай и компот. Сколько различных обедов можно составить из указанных блюд? Постройте дерево возможных вариантов заказа?

3. Сколько нечетных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 7? (цифры могут повторяться)

1. На завтрак в школьной столовой любой ученик может выбрать булочку, ватрушку, кекс или сочник, а запить их он может соком, чаем или компотом. Сколько вариантов завтрака предлагается в школьной столовой? Постройте дерево возможных вариантов выбора .

3. Сколько четных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 7? (цифры могут повторяться)

1. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе — мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье — чай и компот. Сколько различных обедов можно составить из указанных блюд? Постройте дерево возможных вариантов заказа?

3. Сколько нечетных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 7? (цифры могут повторяться)

1. На завтрак в школьной столовой любой ученик может выбрать булочку, ватрушку, кекс или сочник, а запить их он может соком, чаем или компотом. Сколько вариантов завтрака предлагается в школьной столовой? Постройте дерево возможных вариантов выбора .

3. Сколько четных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 7? (цифры могут повторяться)

1. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе — мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье — чай и компот. Сколько различных обедов можно составить из указанных блюд? Постройте дерево возможных вариантов заказа?

3. Сколько нечетных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 7? (цифры могут повторяться)

Номер материала: ДБ-1409521

ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону N273-ФЗ «Об образовании в Российской Федерации» педагогическая деятельность требует от педагога наличия системы специальных знаний в области обучения и воспитания детей с ОВЗ. Поэтому для всех педагогов является актуальным повышение квалификации по этому направлению!

Дистанционный курс «Обучающиеся с ОВЗ: Особенности организации учебной деятельности в соответствии с ФГОС» от проекта «Инфоурок» даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (72 часа).

Вам будут интересны эти курсы:

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

По материалам infourok.ru